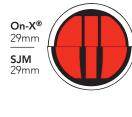


Less mismatch with the On-X mitral valve proves that optimal flow is achieved at a smaller nominal size.¹

The On-X valves were designed to be less turbulent

Low complication rates, less blood destruction and low gradients provide compelling evidence that an inlet flare, near natural valve length and 90° leaflet opening angle provide less turbulence even in larger sized On-X mitral valves. Determining optimal size without gaining increased closing (or trapped) volume was taken into consideration in developing the On-X valves. As you can see in Figure 1, regurgitant closing volume increases greatly for large sizes of a short orifice valve at all heart rates—an undesirable effect.


Figure 1. Optimum Geometric Orifice Area (GOA)²

Larger geometric orifice areas (GOA's) with leaflets in place for the On-X valve

Sizing designations for mechanical valve orifices have not been standardized and have been confusing for the cardiovascular surgical community. A comparison of valve geometric orifice areas listed in the data provided to the United States Food and Drug Administration (US FDA) shows that only one valve manufacturer makes a larger mitral valve orifice than the On-X valve mitral and aortic orifice 25 (Figure 2).³⁻⁷

	TAD (mm)	On-X	SJM	СМІ	ATS
\setminus	23	3.13	2.09	1.82	1.60
7	25	3.73	2.54	2.28	1.94
′	27	3.73	3.12	2.82	2.30
	29	3.73	3.64	3.33	2.70
	31	3.73	4.25	3.33	3.08
	33	3.73	4.25	3.33	3.08

SJM = St. Jude valve; CMI = CarboMedics valve; ATS = ATS valve; TAD = tissue annulus diameter

Greater effective orifice area (EOA) and less mismatch

A Canadian study shows less mismatch for the On-X mitral valve overall compared with other valves (Table 1).¹ Figures 3-5 show that even though other valve brands increase the GOA for each size, the gradient and EOA values for all large sized valves are essentially the same.⁸⁻¹¹ Therefore, increasing GOA beyond optimal flow does not make sense when increased turbulence, blood destruction and noise are a concern. Replacement of mitral regurgitation or stenosis with a prosthetic that has a large trapped volume and a limited EOA is essentially implanting regurgitant disease.

Table 1. Mitral Valve Comparison¹

Valve Brand	Number of patients	EOA	IEOA	
On-X	85	2.4	1.3	
SJM	209	2.2	1.28	
CMI	121	2.3	1.26	

SJM = St. Jude valve; CMI = CarboMedics valve; IEOA= indexed effective orifice area

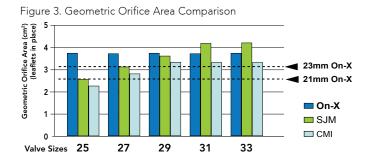


Figure 4. Mitral Effective Orifice Area Comparison

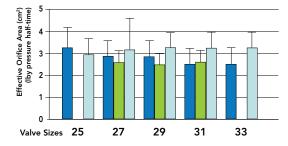
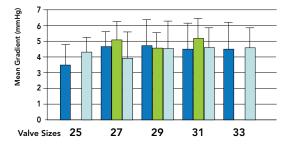



Figure 5. Mitral Mean Gradient Comparison

Iron man competition for an On-X mitral valve

This optimal flow has been proven to be effective even in a 6'5'', 230 pound man who completed a triathlon 10 months after his implant

surgery and continues to propel him through more rigorous exercises like the half iron man competiton.

Figure 4. Patient with On-X mitral valve

Lowest mitral complication rates for the On-X valve

In recent trials for FDA approval, the On-X valve showed the lowest overall mitral complication and mortality rates (Table 2). These low rates and reduced LDH levels are evidence of lower turbulence for the On-X valve.^{3-7,13}

Table 2. Comparison of Mitral Hematological Clinical Event Rates 4,6,7,12

Clinical Event	On-X (FDA)	On-X 12 year	ATS	СМІ
Thromboembolism	1.7	0.9	4.0	2.8
Thrombosis	0	0.1	0.5	0.7
Hemorrhage	1.4	1.0	0.5	2.1
Mortality	2.2	2.0	3.5	4.4
Composite	3.1	2.0	5.0	5.6

ATS = ATS valve, CMI = CarboMedics valve

Less mismatch, lower complication and mortality rates, less closing regurgitation and low blood destruction all prove that the On-X mitral valve is the right one for your mechanical valve patients.

References

- Lam BK, Chan V, Hendry P, et al. The impact of patient-prosthesis mismatch on late outcomes after mitral valve replacement. J Thorac Cardiovasc Surg 2007;133:1464-73
- Wu ZJ, Gao BZ, Slonin JH, Hwang NHC. Bileaflet mechanical heart valves at low cardiac output. J ASAIO 1996;42:M747
- Some values calculated at On-X Life Technologies, Inc. from base data provided by approval submissions.
- On-X® Prosthetic Heart Valve. Summary of Safety and Effectiveness Data submitted to the United States Food and Drug Administration. PMA P000037. Approval date May 30, 2001 and March 6, 2002
- 5. SJM Regent® Valve. Clinical Study Summary (package insert)
- CarboMedics® Prosthetic Heart Valve. Summary of Safety and Effectiveness Data submitted to the United States Food and Drug Administration. PMA P900060. Approval date April 13, 1993
- ATS Open Pivot® Bileaflet Heart Valve. Summary of Safety and Effectiveness Data submitted to the United States Food and Drug Administration. PMA P990046. Approval date October 13, 20001.

- Chambers J, Laczkovics A, Greve H, et al. Early postoperative echocardiographic hemodynamic performance of the On-X® prosthetic heart valve - a multi-center study. J Heart Valve Dis 1998;7(5):569-73
- Wang Z, Grainger N, Chambers J. Doppler echocardiography in normally functioning replacement heart valves: A literature review. J Heart Valve Dis 1995;4:591-614
- Aoyagi S, Yasunaga H, Sato T, et al. Doppler echocardiographic evaluation of the St. Jude Medical valve. Artif Organs Today 1995;5(1):49-56
- Messner-Pellec P, Wittenberg O, Leclecrcq F, et al. Doppler echocardiographic evaluation of the Omnicarbon cardiac valve prostheses. J Cardiovasc Surg 1993;34:195-202
- Chambers JB, Pomar JL, Mestres CA, Palatianos GM. Clinical event rates with the On-X bileaflet mechanical heart valve: A multicenter experience with followup to 12 years. J Thorac Cardiovasc Surg 2012. Article in press. Available online February 2012 (6 pages)
- 13. Birnbaum D, Laczkovics A, Heidt M, et al. Examination of hemolytic potential with the On-X® Prosthetic Heart Valve. J Heart Valve Dis 2000;9:142-45

On-X aortic and mitral valves are FDA approved.

CAUTION: Federal law restricts this device to sale by or on the order of a physician. Refer to the Instructions for Use that accompany each valve for indications, contraindications, warnings, precautions and possible complications. For further information, visit www.onxlti.com.

Headquarters and Manufacturing Facilities: 1300 East Anderson Lane, Building B Austin, Texas 78752 U.S.A. Telephone: (512) 339-8000

Facsimile: (512) 339-3636 www.onxlti.com onx@onxlti.com

010006 208 083112 © 2012 On-X Life Technologies, Inc.